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ABSTRACT 
In this paper we have presented a research for de-noising the EEG collected Brainstem Speech Evoked Potentials data 

collected in an audiology lab in University of Ottawa, from 10 different human subjects. Here the de-noising 

techniques we have considered are Yule-Walker Multiband Filter, Cascaded Yule-Walker-Comb Filter, Conventional 

Wavelet Transform estimation filters: Daubechies, Symlet, Coiflet Wavelet families, Translation Invariant (TI) 

Wavelet Transform estimation filter, FAST Independent Component Analysis (FASTICA) De-noising Technique, 

Combined algorithm of “Translation Invariant (TI) Wavelets and Independent Component Analysis” De-noising 

technique. The performance measures we have considered are Mean Square Error (MSE) and Signal-to-Noise-Ratio 

(SNR) values. Out of these techniques we found that cascading of Yule-Walker filter and Comb-Peak filter gave better 

De-noising performance than Yule-Walker Multiband Filter. Then conventional Wavelets performed far better than 

the cascaded filter, in those Daubechies family of wavelets worked better than all. Then FASTICA Algorithm worked 

near to the performance of Conventional Wavelets but far better than cascaded filter. Then we have utilized Translation 

Invariant (TI) wavelet algorithm which provided the excellent performance than above all. Then we have utilized 

combined Algorithm of “Translation Invariant (TI) Wavelets and Independent Component Analysis - CSTIICA” 

algorithm which found to be, it may perform better than TI wavelets algorithm. Ultimately TI and CSTIICA algorithms 

are found to be may be the best auditory artifact removal techniques and can be highly useful in auditory EEG data 

analysis to the best. 
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     INTRODUCTION 
EEG measures the brain activity. Major categories of 

noise in EEG signals are artifacts: electrical power 

supply, earth magnetism, heartbeat, breathing, eye 

movements and blinking, the machinery that are used 

to record signals and the brain activity which we are 

not interested are all cause noise in the EEG collected 

data. EEG signals are therefore a combination of the 

signals pure EEG and artifacts. The presence of these 

noises introduces spikes and results in signal 

distortion. So, correct analysis is impossible. This 

results in misdiagnosis for some patients. Noise must 

be eliminated or attenuated. The attenuation of noise 

can lead to considerable information loss. The most 

recent methods of de-noising techniques are 

Independent Component Analysis and Wavelet 

Transform, which have found to be useful tools for de-

noising biomedical signals in the last just more than a 

decade and have become an active research of interest 

(M. Akin et al., 2002, M.I. Bhatti et al., 2008).  

 

Independent Component Analysis is an advanced and 

recent technique for data analysis such as EEG. In the 

recent 15 years ICA has been extensively studied upon 

its attractive potential applications into medical signal 

processing such as EEG, speech recognition etc (U.E. 

Emuir et al.,2003).  In most of the neurological data, 

there is a large amount of noise, and the number of 

independent components is unknown which gives 

difficulties for many ICA algorithms. So ICA so does 

work on decomposing a signal (random vector) into 
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statistically independent components. The classical 

definition of ICA is suppose there are m independently 

and identically distributed non-Gaussian sources, 

called Independent Components (ICs), with at most 

one Guassian source. All of them are statistically 

independent to each other (S. Hoffman et al., 2008). 

Independent component analysis originated from the 

field of blind source separation (BSS). In BSS problem 

in the given set of observations the inherent signal 

information is hidden, the mixing weights of the 

individual signals are unknown. BSS identifies the 

source signals and/or the mixing weights and separates 

these sources (A. Hyvarinen et al., 2001). ICA is 

useful in separation of the EEG signals into its 

constituent independent components (ICs) and then 

eliminating the ICs which contribute to the noise.   

 

Like ICA, Wavelet transform (WT) has been used to 

study EEG signals successfully because of its good 

localization properties in time and frequency domain. 

EEG signals pass through two complementary fitters 

and emerge as two signals, approximation and details. 

This is called decomposition or analysis. The 

components can be assembled back into the original 

signal without loss of information. This process is 

called reconstruction or synthesis. The mathematical 

manipulation which implies analysis and synthesis is 

called discrete wavelet transform (DWT) and inverse 

of it is discrete wavelet transform (IDWT) (B. 

Ferguson et al., 2001). There have been many 

approaches to de-noising using WT where the EEG 

signals are decomposed into wavelets and noise 

removal done using thresholding and shrinkage. In this 

we particularly concentrate on thresholding.  

 

Basing on the most recent (may be 1.5/2 decades) 

advancements and applicability of ICA and Wavelets 

for de-noising Biomedical Signals such as EEG 

neurological signals we considered their application 

for de-noising on EEG collected Brainstem speech 

evoked potentials signals, collected in an audiology 

lab in University of Ottawa, collected from 10 human 

subjects. There is increasing interest in recording 

auditory brainstem responses to speech stimuli 

(speech ABR) as there is evidence that they are useful 

in the diagnosis of central auditory processing 

disorders, and in particular in some children with 

learning disabilities (Johnson et al., 2005). However, 

the frequency content of natural speech is neither 

concentrated in frequency nor in time, the recording of 

speech ABR of sufficient quality may require tens of 

minutes (Dajani et al., 2005). Even with a synthetic 

consonant-vowel stimulus, a recording time of several 

minutes was required (Russo et al., 2004). Speech 

ABR is believed to originate in neural activity that is 

phase-locked to the envelope or harmonics of the 

stimulus. As a result, the recorded responses are 

remarkably speech-like. In fact, speech ABR is quite 

intelligible if played back as a sound (Galbraith et al., 

1995). As a result, methods used for Voice Activity 

Detection (VAD) may be useful for the detection of 

speech ABR (Ranganadh et al., 2012, 2013). Once the 

response is detected, then other noise suppression 

algorithms could in principle be applied to improve the 

Signal-to-Noise Ratio (SNR). We found the speech 

like response in these brainstem speech evoked 

potentials collected from single electrode EEG and 

also we detected Voice by using VAD algorithms 

including our own methodology of Signal-to-Noise 

Ratio Peak Valley Difference Detection Ratio, which 

confirmedly detected Voice amazingly all the times 

with higher SNRs (Ranganadh et al., 2012, Ranganadh 

et al., 2013). Collecting data and Noise reduction in 

biomedical signals collected from single electrode 

EEG for Brainstem Speech evoked potentials of 

Audiology is a highly advanced, huge and interesting 

area of research and relatively new. In our research we 

have collected data (Dajani et al., 2005; Johnson et al., 

2005; Russo et al., 2004) from single electrode EEG 

signals, collected in an audiology lab of University of 

Ottawa. The major component evoked potential, 

reflects coordinated neural ensemble activity 

associated with an external event. Evoked potentials 

offer important information to study the neural basis 

of perception and behavior. In these signals in addition 

to evoked potential, potentials caused by background 

activity are also present. This background activity 

unrelated to any specific event “noise” to be 

suppressed and evoked potentials have to be extracted. 

In clinical and cognitive researches the extraction of 

evoked potentials is an essential task. So there are 

plenty of methods have come up to extract the evoked 

potentials, basing on the application, they work in their 

limitations to an extant with some tradeoffs. In our 

research to improve the de-noising performance we 

have designed various techniques for the Auditory 

Brainstem Responses of Brainstem speech evoked 

potentials, which successfully improved Signal-to-

Noise Ratio for extracting evoked potentials. Some 

times cascading of filters basing on their frequency 

and time domain properties can develop a filter which 

can improve the de-noising performance of a signal. In 

this research cascading Yule-walker and comb filter 

gave us better performance than without cascading. In 

this research we have concentrated on de-noising 

techniques using Yulewalker filter, Cascaded 

YuleWalk-Comb filter, Conventional Wavelets: 

Daubechies, Symlet and Coiflet, Translation-Invariant 
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(TI) wavelets, FASTICA, and an improved technique 

of “ ‘Cycle Spinning (CS) based TI wavelets’ and 

‘ICA’ ” combination algorithm: “CSTIICA”. We 

evaluated all these techniques in terms of the 

performance measurements of SNR, MSE. We found 

that Cascaded YuleWalk-Comb filter is working better 

than Yule-walker filter, then conventional wavelets 

are performing far better than cascaded Yule-comb 

filter and that too specifically Daubechies wavelets are 

working best. TI wavelets are working far better than 

Conventional Wavelets. Among FASTICA and 

conventional wavelets, Daubechies wavelets are 

working nearly better than FASTICA, but both are 

having nearby performances.  

 

“ ‘Cycle Spinning (CS) based TI wavelets’ and ‘ICA’ 

” combination algorithm: “CSTIICA” is working with 

far higher  performance than TI wavelets and best 

performed among all the techniques. TI wavelets de-

noising technique, and CSTI-ICA de-noising 

technique are providing highly innovative 

observational results with better performances in 

suppressing noise for extracting Evoked potentials; 

and hence a better improvement in de-noising.  

 

The paper has been organized in this fashion: Section 

II gives the introduction to the designed filters; Section 

III discusses different results evaluating the 

performances of all the implemented de-noising 

techniques. Section IV discusses the Conclusion of the 

research.  

 

INTRODUCTION TO DESIGNED FILTERS 
The EEG collected Auditory Brainstem Responses of 

Brainstem Stem speech evoked potentials data was 

collected (Dajani et al., 2005; Johnson et al., 2005; 

Russo et al., 2004) from 10 different human subjects 

from an audiology lab in University of Ottawa with 

corresponding hardware and software experimental 

setups of the audiology lab. For the experimental data 

analysis purposes for this research it has been sampled 

for 1024, 2048 samples. The research performed on 

MATLAB 7.8 R2009a installed on windows XP 

professional OS based computer system with Intel 

E5200, 2.5 GHz processor in University Of Ottawa; 

and MATLAB 8.3 R2014a installed on windows 7 OS 

based computer system with Intel Core I5 3.30 GHz 

processor in ICFAI Foundation for Higher Education, 

Hyderabad, India. The experiment’s main 

concentration is to de-noise the EEG collected 

Auditory Brainstem Responses. For this purpose we 

have done the de-noising process by using the Yule-

Walker filter, Cascaded Yule-Walker-Comb Peak 

filter (Ranganadh et al., 2014), Conventional Wavelets 

(Ranganadh et al., 2014): Daubechies, Symlet, Coiflet 

Wavelet family, Translation-Invariant (TI) wavelets 

(Ranganadh et al., 2014), Fixed point ICA: FASTICA, 

Combination of “Cycle Spin TI wavelets and 

FASTICA - CSTIICA” filters. The performance 

measures considered are SNR (dB), MSE.  

 

IIR Filters and Conventional Wavelets (Ranganadh et 

al., 2014): IIR filters such as Yule-Walk Multiband 

Filters and Comb filters are some of the filters which 

work for EEG audio-logical signals for de-noising the 

signals as that work well on multiband signals.  We 

considered here both these filters and evaluated their 

de-noising performances and evaluated by individual 

filters and cascaded Yule-Walk and Comb-Peak filters 

to get better performance. The cascading process has 

given interesting results by providing considerable 

improvement in the de-noising process (Ranganadh et 

al., 2014). Wavelet transform produces wavelet 

coefficients of the noiseless signal and the coefficients 

of the noise. Researchers found that wavelet de-

noising is performed by taking the wavelet transform 

of the noise-corrupted and passing the detail 

coefficients, of the wavelet transform, through a 

threshold filter where the details, if small enough, 

might be omitted without substantially affecting the 

main signals. There are two main threshold filters – 

soft and hard. Research has shown that soft-

thresholding has better mathematical characteristics 

and provides smoother results. Wavelets Possesses 

frequency-dependant windowing, which allows for 

arbitrary high resolution of the high-frequency signal 

components; unlike STFT. A key advantage of 

wavelet techniques is the variety of wavelet functions 

available. So it allows us to choose the most 

appropriate one for the signal under investigation. For 

the above reasons the wavelet transform has emerged 

over recent years as a powerful time-frequency 

analysis and signal-coding tool suitable for use in 

manipulation of complex non-stationary signals in 

biomedical signal processing such as in human 

auditory signal processing. Around 2 decades back 

Wavelet transforms were introduced for Evoked 

Potentials analysis of EEG (E.A. Bartnik et. al., 1992; 

O. Bertrand et. al., 1994; R.Q. Quiroga et. al., 1999). 

Recently, the wavelet transform was applied for EEG 

evoked potential extraction by choosing a few wavelet 

coefficients (R.Q. Quiroga et. al., 2003), requiring a 

priori knowledge of the time and frequency ranges of 

the Evoked Potential. But such knowledge is abundant 

in EEG. Wavelets offer higher temporal resolution at 

lower frequencies, so it suits well the 1/f spectral 

profile of evoked potentials. Wavelets filtering process 

includes three steps: 1. Wavelet decomposition 2. 
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Nonlinear thresholding 3. Inverse wavelet 

reconstruction. Nonliner thresholding (I.M. Johnstone 

et. al., 1997) is used in the thresholding step for 

separating the signal from noise. The evoked potential 

will be wavelet decomposed with large wavelet 

coefficient, where as the ongoing background activity 

will be decomposed with small coefficients. So 

thresholding the wavelets coefficients can estimate the 

evoked potentials. Here we studied temporally 

correlated white Gaussian noise model, and we 

proposed level-dependant thresholding (R.R. Coifman 

et. al., 1995). Here we have utilized Daubechies, 

Symlet and Coiflet conventional wavelets. We proved 

that wavelets are performing far better than cascaded 

filters (Ranganadh et al., 2014).  

 

Translation-Invariant (TI) wavelets Filtering 

Estimator (Ranganadh et al., 2014): In addition to the 

conventional wavelet based filtering estimators we are 

considering the TI wavelet based estimator filtering 

technique. Here we are choosing translation invariant 

wavelet evoked potential estimator, in addition to 

conventional wavelets. In this filtering technique 

problems such as pseudo-Gibbs phenomenon near the 

discontinuities (R.R. Coifman et. al., 1995) can be 

overcome.  

 

To do the process with TI wavelets evoked-potential 

estimation filtering the steps are  

1. We shift the data.  

2. Threshold the shifted data.  

3. Unshift the thresholded data.  

4. Then average the results for all shifting.  

 

We did this process for each individual data sets. We 

considered shifting and unshifting the signal in the 

frequency domain and we did 1,2,3,4,5 shifts for each 

individual data set and averaged the results. We 

utilized two popular thresholding techniques: hard 

thresholding, soft thresholding. Soft thresholding sets 

the wavelet coefficients with the magnitude less than 

the threshold to zero, but it reduces the remaining 

coefficients in magnitude by the threshold also when 

compared to hard thresholding, soft thresholding does 

not contain noisy spikes, so we strongly considered 

soft thresholding and it provides smooth estimates. We 

have implemented this TI wavelets algorithm on our 

brainstem speech evoked potential data for 10 human 

subjects. Then we calculated overall SNR values for 

each subject and compared it with conventional 

wavelets. TI wavelets estimation filtering method is 

outperforming the conventional wavelet filters 

(Ranganadh et al., 2014).  

 

Unscented Kalman Filter (UKF) (S. Julier et al., 1997; 

S. Julier et al., 2004): UKF is a Bayesian filter which 

uses minimum mean square error as the criterion to 

measure the optimality. UKF involves Unscented 

Transformation a method used to calculate the first 

and second order statistics of the outputs of nonlinear 

systems with Gaussian. UKF addresses the flaws in 

Kalman Filters (Extended Kalman Filter). UKF uses 

the intuition (S. Julier et al., 2004) that it is easier to 

approximate a probability distribution function rather 

than to approximate an arbitrary nonlinear function or 

transformation. Following this intuition, a set of 

sample points, called sigma points, are generated 

around the mean, which are then propagated through 

the nonlinear map to get a more accurate estimation of 

the mean and covariance of the mapping results. The 

nonlinear stochastic system used for the algorithm is: 

 

 

where A and H are the known and constant matrices 

respectively, xk is the unobserved state of the system, 

uk is a known exogenous input, yk is the observed 

measurement signal, vk is the process noise and wk is 

the measurement noise. UKF uses the intuition that it 

is easier to approximate a probability distribution 

function rather than to approximate an arbitrary 

nonlinear function or transformation.  

 

Application of combined algorithm of “Translation 

Invariant Wavelets and Independent Component 

Analysis” (CSTIICA) Filter: Recently there has been 

research comparing the de-noising techniques of both 

ICA and WT. Research shows that ICA and wavelets 

complement each other, removing the limitations of 

each (V.V.K.D.V. Prasad et. al, 2008). So an 

algorithm which combines ICA and WT with ICA as 

post or pre processing tool has been developed (G. 

Inuso et. al, 2007). They found this to be 

outperforming. In this cycle spinning (CS), proposed 

by Coifman and Donoho (R.R. Coifman et al, 1995), 

introduced as a single yet efficient method which 

utilizes periodic Time-Invariant of WT in fixing the 

noise found in wavelet coefficients and defined as: 

 

 

Where k1, k2 are maximum no. of shifts, T shift 

invariant transform, S i,j is the circulant shift, and Ө 
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threshold operator. CS calls for the suppression of 

these noises by shifting the signals in time and 

computing the estimate. Using different shifts produce 

different estimates which are not completely 

independent; consequently averaging these estimates 

results in a reduction in the noise generated in each 

shift. This result in the de-noising of all possible 

unique circularly shifted version of the signal and the 

creation of the translation invariant wavelet transform 

(TIWT) method. Research shows that this technique 

has superior performance over plenty of the de-noising 

algorithms using thresholding or shrinkage of wavelet 

coefficients and has motivated the analysis of many 

de-noising algorithms in terms of optimal 

 
Fig 1. Combined (CSTIICA) – Artifacts removal system. The blocks in the order from left to right: Raw EEG, Decomposed 

into Wavelets, Wavelets, Filtering using UKG, Filtered wavelets, ICA de-noising, Independent components, Reconstruct 

signal, pure EEG. 
 

filtering of noisy wavelet coefficients. The 

combination of WT and Kalman filter (KF) (S. Julier 

et al., 2004) was a new idea in the year 2006. Research 

shows that combination effectively correct overlapped 

spectra and reduces noise (p. senthil et al., 2008). The 

use of KF and WT combination improved de-noising 

techniques. Each method aims at improving the other  

(i) WT removes overlapping of noise 

signals that ICA can not filter out.  

(ii) ICA can distinguish between noise 

and signals that are nearly the same 

or higher amplitude, which WT has 

difficulty with.  

(iii) WT exhibits serious problems such 

as Pseudo-Gibbs phenomenon 

which CS eliminates and  

(iv) Combination of filters and WT 

effectively correct overlapped 

spectra.  

The main difference of CSTI-ICA and TI Algorithm is 

that of introduction of Cycle Spinning and merging of 

WT and ICA. This CSTI-ICA algorithm’s block 

diagram is given in the above figure Fig 1.  

Algorithm is having the following steps:  

1. Collection of EEG data of Brainstem 

Speech Evoked Potentials signals from an 

Audiology Lab. Here we collected the data 

from an audiology Lab of University of 

Ottawa, in which the data had been collected 

from 10 different healthy subjects in real-

time.   

2. Apply Cycle Spin to the signal: The number 

of time shifts is determined; in so doing 

signals are forcibly shifted so that their 

features change positions removing the 

undesirable oscillations which result in 

pseudo-Gibbs phenomena.  

 

 
 

f (n) is the signal, Sh is the shift operator, N is the 

number of signals.  

3. Decomposition of signal: Signals are 

decomposed using DWT separating noise 

and true signals; using the Daubechies family 

as the overall performance of De-noising is 

done best in the case of Daubechies wavelet 

family among all the three Daubechies, 

Symlet, Coieflet wavelets family of 

conventional wavelets (Ranganadh et. al., 

2014).  

4. Filter Coefficients: Perform UKF on the 

coefficients to filter out some noise.  

5. Denoise using the soft-thresholding method 

discarding all coefficients below the 

threshold value based on the universal 

threshold defined by Donoho & Johnstone et.  

al, 1995 given as: 

 

 
N number of samples, σ2 is the noise power.  

6. Apply ICA algorithm: Signals and noise 

may have nearly the same frequency 
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characteristics and overlap in time thus 

producing noisy coefficients that WT has not 

been able to distinguish and remove. ICA is 

able to take care of the inherent distributions 

hence distinguish noise and remove them. 

Research shows that ICA is a robust 

denoising method where its performance is 

not affected by the severity of the mixing 

signals (U.E. Emuir et. al, 2003). We 

implemented here a fixed point ICA 

algorithm FASTICA (G.G. Herrman et al., 

2005). Which by itself also we have 

compared along with conventional wavelets 

de-noising and also TI wavelets de-noising.  

7. Reconstruction of EEG signals of Auditory 

Brainstem Responses (ABR): Reconstructed 

using inverse DWT.  

Apply CS: Revert signals to their original time shift 

and average the results obtained to produce the de-

noised EEG signals. The proposed algorithm can be 

expressed as Avg [Shift – Denoise -Unshift]. 

RESULT ANALYSIS 
Here in this research we have done the application of 

different de-noising filters on the EEG collected 

Brainstem Speech Evoked Potentials of Auditory 

Brainstem Responses collected in an audiology lab of 

University of Ottawa. We have done the de-noising 

performances by using the performance measures of 

Mean Square Error (MSE) and; Signal-to-Noise Ratio 

(SNR) in dB. Here the results are given in the tabular 

forms Table 1 and Table 2. It is clear that MSE values 

are less in the case of Cascaded filter than Yule-walk 

filter showing that it is better in de-noising. Then 

Daubechies wavelets are having far smaller values of 

MSE showing far better performance than cascaded 

filter. Then FASTICA is also having far better 

performance than the cascaded filter and 

comparatively near performance of the conventional 

wavelets. Then TI wavelets are having far smaller 

MSE values than conventional wavelets and 

performing best. Then CSTI-ICA filter is working far 

better than TI, having far smaller values of MSE. In 

this research CSTI-ICA is performing the best of all. 

TI and CSTI-ICA are highly useful showing best of all 

methods. The bar graph Figure 1 shows clearly of this 

performance of all these techniques in graphical form 

which gives us much clarity on the result analysis and 

makes it easier to exactly identify the performance. 

The table 3 shows the performance of TI wavelets 

filter over Daubechies wavelets filter in terms of % 

reduction of MSE values, which represents the 

performance of TI wavelets estimator for all the 10 

subjects. The Table 4 shows that % reduction in MSE 

values of CSTIICA filter over TI filter represents the 

% performance of CSTIICA over TI.  

The Table 2 shows the performance of all the 

implemented filters in terms of improvement in the 

Signal-to-Noise Ratio. Here also the performance of 

the Cascaded filter is higher. Then Daubechies 

wavelets are performing excellent than Cascaded 

filter, and TI wavelets are performing far better than 

Daubechies. Then FASTICA also performing far 

better than cascaded filter, but comparatively near (but 

less) performance to Daubechies wavelets. Then 

CSTIICA filter is working better than TI filter and is 

the highest performance than all filters. TI and 

CSTIICA are best of all filters having highest SNR 

values and are highly useful for EEG auditory data 

analysis and auditory artifact removal.  The bar graph 

Figure 2 shows the SNR performances of all auditory 

filtering techniques, which makes easy to analyze the 

SNR results and ease of analysis, makes clear that TI 

and CSTIICA are performing best of all filters. Table 

5 shows the % improvement in SNR values of TI 

wavelets filters over Daubechies wavelets filtering. 

Table 6 shows the % improvement in SNR values of 

all 10 subjects of CSTIICA over TI wavelets filtering.  

CONCLUSIONS 
In this research we have done research on De-noising 

Neurological Biomedical Signals from the EEG 

collected brainstem speech evoked potentials data 

from 10 different human subjects using a) Yule-

Walker Multiband filter; b) Cascaded Yule-Walker-

Comb-Peak filter; c) Conventional Wavelets of 

Daubechies, Symlet, Coiflet family wavelets; d) 

FASTICA algorithm, e) TI wavelets Estimation Filter, 

f) CSTI-ICA algorithm filter. Performance 

measurements are done by using MSE and SNR (dB). 

We found that MSE value of Conventional wavelets is 

far less and SNR is far higher than a), b). FASTICA is 

also performing near to the performance of c) but 

Daubechies conventional wavelets family is 

performing better in auditory artifact removal. In our 

research we found that FASTICA is also one of the 

best De-noising techniques for Auditory Brainstem 

Responses and also comparable to the performance of 

conventional Wavelets. Then we have found that TI 

wavelets are having highly small values of MSE and 

highly large values of SNR and performing excellent 

than conventional Wavelets filtering approach. Then 

CSTI-ICA algorithm found to be performing better 

than TI by having smallest MSE values and highest 

SNR values. We found that TI and CSTI-ICA have 

done exceptional performances of auditory artifact 

removal from Speech ABR out of all the techniques 
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we have considered. We found one of the most 

identifiable result that wavelets is an excellent tool for 

artifact removal from EEG neural signals, even in our 

specific case of Auditory Artifact removal from 

speech Auditory Brainstem Responses - which is 

relatively new area and just more than a decade 

research. 
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Figure 1.  MSE Bar Graph: Bar graph showing MSE performance of all the de-noising techniques. On the X-axis it is subject 

number (1 to 10). On the Y-axis the values of Mean Square Error (MSE). For each subject 1st bar is Yule-Walker, 2nd bar is 

Cascaded-Yule-Walker-Comb, 3rd bar is Daubechies, 4th bar is Symlet, 5th bar is Coiflet,6th bar is TI, 7th bar is FASTICA, 8th 

bar is CSTIICA.  It clearly shows TI and CSTIICA are the best and CSTIICA is the smallest MSE. 
 

 

Figure 2.  SNR Bar Graph: Bar graph showing SNR (dB) performance of all the de-noising techniques. On the X-axis it is 

subject number (1 to 10). On the Y-axis the values of  SNR (dB). For each subject 1st bar is Yule-Walker, 2nd bar is Cascaded-

Yule-Walker-Comb, 3rd bar is Daubechies, 4th bar is Symlet, 5th bar is Coiflet,6th bar is TI, 7th bar is FASTICA, 8th bar is 

CSTIICA. It clearly shows TI and CSTIICA are the best and CSTIICA is the highest SNR. 
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